Keywords
Categories
Contact for the resource
Years
Formats
Representation types
From 1 - 10 / 183
  • Categories  

    Plant available water holding capacity (v%) of the soil fine earth fraction, with field capacity defined at h=200 cm or pF 2.3, aggregated over rootable depth and the top 30 cm, mapped at 1km resolution

  • Categories  

    Soil organic carbon stock in tons per ha for ICCP depth intervals predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: t / ha.

  • Categories  

    Rootable depth limiting soil factor for maize, mapped at 1km resolution

  • Categories  

    Extractable Magnesium (Mg) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Extractable Potassium (K) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) . Values M = mean value predicted. using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Predicted USDA 2014 suborder classes (as integers) predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE')

  • Categories  

    Total nitrogen (N) content in g/kg of the fine earth fraction in 2 depth intervals (0-20 cm and 20-50 cm) measured according to the analytical procedures of wet oxidation and predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Predicted probability in percent per class predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: probability.

  • Categories  

    The Soil and Terrain database for Cuba primary data (version 1.0), at scale 1:1 million (SOTER_Cuba), was compiled of enhanced soil informtion within the framework of the FAO's program Land Degradation Assessment in Drylands (LADA). Primary soil and terrain data for Cuba were obtained from the SOTERLAC database (ver. 2) at scale 1:5 million. This update includes changes in the GIS file, based on the SRTM-DEM derived surface information and supplementary attributes data changes of the pedon database. SOTER forms a part of the ongoing activities of ISRIC, FAO and UNEP to update the world's baseline information on natural resources.The project involved collaboration with national soil institutes from the countries in the region as well as individual experts.

  • Categories  

    Extractable Zinc (Zn) content of the soil fine earth fraction in mg/100kg (pp100m) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.