Catalog
184 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
status
Scale
Resolution
From 1 - 10 / 184
  • Categories  

    This harmonized set of soil parameter estimates for Senegal and The Gambia. It was derived from the Soil and Terrain Database for Senegal and The Gambia (SENSOTER ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of the study area, covering some 200 800 km2, has been characterized using 149 unique SOTER units. Each SOTER unit consists of up to four different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts. Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SENSOTER have been characterized using 90 profiles of which 34 are synthetic. The latter represent some 37 per cent of the territory. Comprehensive sets of measured attribute data are not available for most of the measured profiles (56) collated in SENSOTER. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil parameter estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database. The current procedure only considers profiles in WISE that have FAO soil unit names identical to those mapped for SOTER-Senegal (41) and that originate from the Tropics (n= 4510). Parameter estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth. Thes include: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECE), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Soil parameter estimates are presented as summary files (in MS-Access format) which can be linked to the SENSOTER map using GIS, through the unique SOTER-unit code (NEWSUID). The derived (secondary) soil data for Senegal and The Gambia are considered appropriate for exploratory studies at national scale (1:1 million); these should consider the full map unit composition.

  • Categories    

    A measure of the acidity or alkalinity in soils, defined as the negative logarithm (base 10) of the activity of hydronium ions (H+) in water. ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories    

    Gravimetric content of organic carbon and inorganic carbon in the fine earth fraction* (g/kg). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018). * The fine earth fraction is generally defined as being less than 2 mm. However, an upper limit of 1 mm was used in the former Soviet Union and its sattelite states (Katchynsky scheme). This has been indicated in the database.

  • Categories    

    The Soil and Terrain database for the Upper Tana River Catchment (version 1.1) (SOTER_UT_v1.1) at scale 1:250,000 was compiled to support the Green Water Credits (GWC) programme by creating a primary SOTER dataset for a hydrology assessment of the basin. The Kenya Soil Survey of the Kenya Agriculture Research Institute(KARI-KSS) and ISRIC-World Soil Information compiled the SOTER_UT dataset ... according to the standard SOTER methodology. The dataset includes both data of the original KENSOTER database (1:1M) for the Upper Tana Catchment and, new SOTER units and soil profile data taken from other, existing soil surveys mainly at scale 100,000 and from more detailed studies. The SOTER database was used for the hydrology assessment of Upper Tana basin using the model Soil and Water Assessment Tool (SWAT)to quantify the impact of land management practices change in the basin's waterbalance.

  • Categories    

    Measured according to the Mehlich-3 extractant, a combination of acids (acetic [HOAc] and nitric [HNO3]), salts (ammonium fluoride [NH4F] and ammonium nitrate [NH4 NO3]), and the chelating agent ethylenediaminetetraacetic acid (EDTA); considered suitable for removing P and other elements in acid and neutral soils (mg/kg). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories    

    Nutrient clusters based on fuzzy k-means of the soil fine earth fraction and spatially predicted at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories    

    A measure of the acidity or alkalinity in soils, defined as the negative logarithm (base 10) of the activity of hydronium ions (H+) in a CaCl2 solution, as specified in the analytical method descriptions. ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories  

    Soil pH x 10 in H2O at 6 standard depths (to convert to pH values divide by 10) predicted using two sets of Africa soil profiles data. Measurement units: NA. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories    

    Soil moisture content by weight, at tension 1500 kPa (pF 4.2) (g/100g). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories    

    Volumetric moisture content (v%) of the soil fine earth fraction at permanent wilting point (at h=15,000 cm or pF 4.2), aggregated over the Effective Root Zone Depth for Maize, mapped at 1km resolution