From 1 - 10 / 34
  • Categories  

    Exchangeable calcium (Ca2+; measured in 1M NH4OAc buffered at pH 7 with part of the data converted from data measured according to Mehlich 3) in cmolc/kg (fine earth) at 2 depth intervals (0-20 cm and 20-50 cm) predicted using two Africa soil profiles datasets. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Extractable Calcium (Ca) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    The Soil and Terrain database for Malawi (version 1.0), at scale 1:1 million, was compiled based on the soil map of Malawi at scale 1:250,000 (compiled by the Land Resources Evaluation Project) that was complemented with soil boundary information from the provisional soil map at scale 1:1 million. The 90m SRTM-DEM was used to define the various landform types of the SOTER units and also to adjust their boundaries. The SOTER map units were attributed with soil information obtained from the Africa Soil Profiles Database. The SOTER compilation followed the methodology described in the SOTER Procedures Manual Version 2. SOTER forms a part of the ongoing activities of ISRIC, FAO and UNEP to update the world's baseline information on natural resources.The project involved collaboration with national soil institutes from the countries in the region as well as individual experts. DOI for dataset (submitted): 10.17027/isric.wdcsoils.20160002

  • Categories  

    The Soil and Terrrain database of Central Africa (SOTERCAF, version 1.0) was compiled at scale 1:2 million for the Democratic Republic of Congo and at scale 1:1 million for Rwanda and Burundi. The SOTERCAF compilation has been a joint collaboration of the Soil Science Laboratory of the University of Ghent, Belgium and ISRIC - World Soil Information, Wageningen under contract with the Food and Agriculture Organisation of the United Nations. Further assistance is provided by the Department BIOT of the Hogeschool Gent, the Royal Museum for Central Africa (Tervuren) and data holders in the Democratic Republic Congo, Burundi and Rwanda. The project started in September 2005 by deriving physiographic units from SRTM grid data based on SOTER landform definitions. The database was completed in July 2006 after combining the physiographic layer with the lithology and soils layer. The border harmonization with the SOTERSAF database was finalized November 2006. SOTERCAF forms a part of the ongoing activities of ISRIC, FAO and UNEP to update the world's baseline information on natural resources.The project involved collaboration with national soil institutes from the countries in the region as well as individual experts.

  • Categories  

    This harmonized set of soil parameter estimates for Latin America and the Caribbean was derived from a revised version of the 1:5M Soil and Terrain Database for the region (SOTERLAC, ver. 2.0) and the ISRIC-WISE soil profile database. The land surface of Latin America and the Caribbean has been characterized using 1585 unique SOTER units, corresponding with 5855 polygons. The major soils have been described using 1660 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a step-wise procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 to -1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data. Results are presented as summary files and can be linked to the 1:5M scale SOTERLAC map in a GIS, through the unique SOTER-unit code. The secondary data set is considered appropriate for studies at the continental scale (greater than 1:5M). Correlation of soil analytical data should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    This harmonized set of soil parameter estimates for the Upper Tana river catchment, Kenya. The data set was derived from the 1:250 000 scale Soil and Terrain Database for the Upper Tana (SOTER_UT, ver. 1.1; Dijkshoorn et al. 2011) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of the Upper Tana, Kenya, covering some 18,900 km2, has been mapped in SOTER using 191 unique SOTER units. Each map unit may comprise of up to three different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts. Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SOTER_UT have been characterized using 146 profiles consisting of 109 real and 37 so-called synthetic profiles. The latter were used to represent some 18% per cent of the study area. Comprehensive sets of measured attribute data are seldom available for most profiles (109) collated in SOTER_UT, as these were not considered in the source materials. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil property estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database. The current taxotransfer procedure only considers profiles in WISE that: (a) have FAO soil unit names (43) identical to those mapped for the Upper Tana in SOTER, and (b) originate from regions having similar Köppen climate zones (n= 5745). Property estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and volumetric water content (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and studies of global environmental change. The soil property estimates can be linked to the spatial data (map), using GIS, through the unique SOTER-unit code; database applications should consider the full map unit composition and depth range.

  • Categories  

    This harmonized set of soil parameter estimates for Central Africa, comprising Burundi, the Democratic Republic of the Congo and Rwanda, was derived from the Soil and Terrain Database for Central Africa (SOTERCAF ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of Central Africa, comprising some 2.4 million km2, has been characterized using 244 unique SOTER units, corresponding with 504 polygons. Each SOTER unit may consist of up to 6 soil components; each of these has been characterized by a representative profile. The main soil units mapped for the region have been characterized using 167 real profiles, selected by soil experts as being regionally representative for these units. The associated soil analytical data have been derived from soil survey reports. Gaps in the measured soil data have been filled using a scheme of using a step-wise procedure that uses taxotransfer rules. These rules were developed using some 5672 soil profiles, held in the ISRIC-WISE database, having similar FAO soil unit names as those reported in the primary SOTERCAF database. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, C/N ratio, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data.

  • Categories  

    This harmonized set of soil parameter estimates has been developed using an updated 1:500 000 scale Soil and Terrain (SOTER) Database for Jordan. The associated soil analytical data were derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a step-wise procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Nineteeen parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth.

  • Categories  

    The Soil and Terrain database for Senegal and The Gambia primary data (version 1.0), at scale 1:1 million (SOTER_Senegal_Gambia), was compiled of enhanced soil information within the framework of the FAO's program Land Degradation Assessment in Drylands (LADA). Primary soil and terrain data for Senegal were obtained through the Institut National de Pédologie Dakar; the digital soil map from the Centre de Suivi Ecologique. Adjustments made in the SOTER units were based on the SRTM-DEM derived data interpretations. SOTER forms a part of the ongoing activities of ISRIC, FAO and UNEP to update the world's baseline information on natural resources.The project involved collaboration with national soil institutes from the countries in the region as well as individual experts.

  • Categories  

    This harmonized set of soil parameter estimates for Senegal and The Gambia. It was derived from the Soil and Terrain Database for Senegal and The Gambia (SENSOTER ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of the study area, covering some 200 800 km2, has been characterized using 149 unique SOTER units. Each SOTER unit consists of up to four different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts. Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SENSOTER have been characterized using 90 profiles of which 34 are synthetic. The latter represent some 37 per cent of the territory. Comprehensive sets of measured attribute data are not available for most of the measured profiles (56) collated in SENSOTER. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil parameter estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database. The current procedure only considers profiles in WISE that have FAO soil unit names identical to those mapped for SOTER-Senegal (41) and that originate from the Tropics (n= 4510). Parameter estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth. Thes include: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECE), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Soil parameter estimates are presented as summary files (in MS-Access format) which can be linked to the SENSOTER map using GIS, through the unique SOTER-unit code (NEWSUID). The derived (secondary) soil data for Senegal and The Gambia are considered appropriate for exploratory studies at national scale (1:1 million); these should consider the full map unit composition.