From 1 - 10 / 90
  • This dataset includes global soil salinity layers for the years 1986, 1992, 2000, 2002, 2005, 2009 and 2016. The maps were generated with a random forest classifier that was trained using seven soil properties maps, thermal infrared imagery and the ECe point data from the WoSIS database. The validation accuracy of the resulting maps was in the range of 67–70%. The total area of salt affected lands by our assessment is around 1 billion hectares, with a clear increasing trend. Further details are provided in a peer-reviewed journal article (https://doi.org/10.1016/j.rse.2019.111260). The code and data used to produce the global soil salinity maps can be accessed by registered Google Earth Engine users at https://code.earthengine.google.com/d43e5a92ae1deed32a0929f57b572756.

  • Categories  

    Soil organic carbon stock in tons per ha for ICCP depth intervals predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: t / ha.

  • Categories  

    Derived available soil water capacity (volumetric fraction) with FC = pF 2.5 at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: v%.

  • Categories  

    Derived available soil water capacity (volumetric fraction) until wilting point at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: v%.

  • Categories  

    Sum of exchangeable bases (Ca2+, Mg2+, K+, Na+ measured in 1M NH4OAc buffered at pH 7 with part of the data converted from data measured according to Mehlich 3) in cmolc/kg (fine earth) at 6 depth intervals predicted using two Africa soil profiles datasets. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Cation exchange capacity (CEC measured in 1 M NH4OAc buffered at pH 7) in cmolc/kg (fine earth) at 6 standard depth intervals predicted using the Africa Soil Profiles Database (AfSP) v1.2. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Soil organic carbon content (fine earth fraction) in g per kg at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: g / kg.

  • Categories  

    Predicted USDA 2014 suborder classes (as integers) predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE')

  • Categories  

    Exchangeable acidity (H+Al measured in 1M KCl) in cmolc/kg (fine earth) at 6 standard depths predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Predicted WRB 2006 subgroup classes (as integers) predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE')