From 1 - 10 / 38
  • Categories    

    Ability of a 1:2 soil water extract to conduct electrical current (dS/m). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories    

    Ability of a water saturated soil paste to conduct electrical current (ECe) (dS/m). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories    

    Ability of a 1:5 soil water extract to conduct electrical current (dS/m). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories    

    Ability of a 1:2.5 soil water extract to conduct electrical current (dS/m). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories  

    Electrical conductivity (measured in 1: x soil: water solution) in dS/m at 6 standard depths predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    This harmonized set of soil parameter estimates for Brazil. The 1:5M scale Soil and Terrain Database for Latin America and the Caribbean (FAO et al. 1998), provided the basis for the current study. The data set has been prepared for the project on Assessment of soil organic carbon stocks and change at national scale (GEF-SOC), which has the Brazilian Amazon as one of its four case ... study areas. The land surface of Brazil has been characterized using 299 unique SOTER units, corresponding with 839 polygons. The major soils have been described using 584 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. Gaps in the measured soil profile data have been filled using a step-wise procedure which includes three main stages: (1) collating additional measured soil analytical data where available; (2) filling gaps using expert knowledge and common sense; (3) filling the remaining gaps using a scheme of taxotransfer rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminum saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2mm), and available water capacity (-33 to -1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data. Results are presented as summary files and can be linked to the 1:5 M scale SOTER map in a GIS, through the unique SOTER-unit code. The subset for the Amazon region, the Brazilian GEF-SOC case study area, has been clipped out of the national set using GIS. It includes 193 unique SOTER units, corresponding with 571 mapped polygons. The secondary data set is considered appropriate for studies at the national scale and regional scale (greater than1:5M). Correlation of soil analytical data, however, should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    This harmonized set of soil parameter estimates for Senegal and The Gambia. It was derived from the Soil and Terrain Database for Senegal and The Gambia (SENSOTER ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of the study area, covering some 200 800 km2, has been characterized using 149 unique SOTER units. Each SOTER unit consists of up to four different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts. Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SENSOTER have been characterized using 90 profiles of which 34 are synthetic. The latter represent some 37 per cent of the territory. Comprehensive sets of measured attribute data are not available for most of the measured profiles (56) collated in SENSOTER. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil parameter estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database. The current procedure only considers profiles in WISE that have FAO soil unit names identical to those mapped for SOTER-Senegal (41) and that originate from the Tropics (n= 4510). Parameter estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth. Thes include: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECE), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Soil parameter estimates are presented as summary files (in MS-Access format) which can be linked to the SENSOTER map using GIS, through the unique SOTER-unit code (NEWSUID). The derived (secondary) soil data for Senegal and The Gambia are considered appropriate for exploratory studies at national scale (1:1 million); these should consider the full map unit composition.

  • Categories  

    This uniform soil data set for the development of pedotransfer functions was developed at the request of the Global Soil Data Task (GSDT) of the Data and Information System (DIS) of the International Geosphere Biosphere Programme (IGBP). The necessary chemical and physical soil data have been derived from ISRIC's Soil Information System (ISIS) and the soil CD-ROM of the Natural Resources Conservation Service (USDA-NRCS). Analytical data were clustered into functional groups based on soil textural class (FAO) and calculated activity of the clay size minerals. Samples from organic and allophanic soils were flagged as separate categories. The file contain analytical data for 131,472 soil samples, originating from 20,920 profiles. Being based on available data, there are several gaps in the measured data

  • Categories  

    This harmonized set of soil parameter estimates has been developed using an updated 1:500 000 scale Soil and Terrain (SOTER) Database for Jordan. The associated soil analytical data were derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a step-wise procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Nineteeen parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth.

  • Categories  

    This harmonized, gridded global data set of soil parameter estimates includes files listing: (1) soil parameter estimates for the component soil units of each terrestrial grid cell, in un-binned format, and (2) soil parameter estimates aggregated or binned into a number of predefined classes. The spatial data, with a resolution of ½ by ½ degree, was derived from the ISRIC-WISE soil database. The land surface between longitudes -180o W and +180o E and latitudes +90o N and -90o S has been characterized using 45948 unique map units; each of these can comprise from one to ten soil units, characterized according to the original legend of the 1:5 million scale Soil Map of the World (FAO-Unesco 1974). Soil parameter estimates for each of these units were derived from analyses of some 9600 profiles held in a working copy of WISE (ver. 2.0). Twenty-two soil variables, identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil gaseous emissions and analyses of global environmental change, were considered. Parameter estimates for the topsoil (0-30 cm) and the subsoil (30-100 cm) are presented for the following variables: content of organic carbon, total nitrogen, the C/N ratio, pH(H2O), CECsoil, CECclay, base saturation, total exchangeable bases, aluminum saturation, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), calcium carbonate content, gypsum content, content of sand, silt and clay, content of fragments less than 2 mm, bulk density, total porosity. For soil drainage class, effective soil depth, and available water capacity (-10 to -1500 kPa), however, parameter estimates are presented on a profile basis. The parameter estimates - median values - presented here should be seen as best estimates; possible types and sources of uncertainty are discussed in the report. The data are considered appropriate for exploratory studies at global scale (greater than 1:5 000 000). Note: A more recent assessment, at a resolution of 30arcsec (WISE30sec), is available at: http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc