From 1 - 10 / 37
  • Categories  

    Total nitrogen (N) content in g/kg of the fine earth fraction in 2 depth intervals (0-20 cm and 20-50 cm) measured according to the analytical procedures of wet oxidation and predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Total Nitrogen (N) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of wet oxidation and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories    

    Total nitrogen in cg/kg at 6 standard depths. Predictions were derived using a digital soil mapping approach based on Quantile Random Forest, drawing on a global compilation of soil profile data and environmental layers. To visualize these layers please use www.soilgrids.org.

  • Categories    

    The sum of total Kjeldahl nitrogen (ammonia, organic and reduced nitrogen) and nitrate-nitrite (g/kg). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories  

    This harmonized set of soil parameter estimates for the Upper Tana river catchment, Kenya. The data set was derived from the 1:250 000 scale Soil and Terrain Database for the Upper Tana (SOTER_UT, ver. 1.1; Dijkshoorn et al. 2011) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of the Upper Tana, Kenya, covering some 18,900 km2, has been mapped in SOTER using 191 unique SOTER units. Each map unit may comprise of up to three different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts. Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SOTER_UT have been characterized using 146 profiles consisting of 109 real and 37 so-called synthetic profiles. The latter were used to represent some 18% per cent of the study area. Comprehensive sets of measured attribute data are seldom available for most profiles (109) collated in SOTER_UT, as these were not considered in the source materials. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil property estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database. The current taxotransfer procedure only considers profiles in WISE that: (a) have FAO soil unit names (43) identical to those mapped for the Upper Tana in SOTER, and (b) originate from regions having similar Köppen climate zones (n= 5745). Property estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and volumetric water content (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and studies of global environmental change. The soil property estimates can be linked to the spatial data (map), using GIS, through the unique SOTER-unit code; database applications should consider the full map unit composition and depth range.

  • Categories  

    This harmonized set of soil parameter estimates for Kenya (KENSOTER), at scale 1:1M, compiled by the Kenya Soil Survey. The land surface of the Republic of Kenya - excluding lakes and towns - has been characterized using 397 unique SOTER units corresponding with 623 soil components. The major soils have been described using 495 profiles, which include 178 synthetic profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports and expert knowledge. Gaps in the measured soil profile data have been filled using a step-wise procedure which includes three main stages: (1) collate additional measured soil analytical data where available; (2) fill gaps using expert knowledge and common sense; (3) fill the remaining gaps using a scheme of taxotransfer rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminum saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments, and available water capacity. These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data. Results are presented as summary files and can be linked to the 1:1M scale SOTER map for Kenya in a GIS, through the unique SOTER-unit code. The secondary data are considered appropriate for studies at the national scale (1:1M). Correlation of soil analytical data, however, should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    This harmonized set of soil parameter estimates for Tunisia. It has been derived from the 1:1 million scale Soil and Terrain Database for the country (SOTER_TN, ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of Tunisia, covering some 164,150 km2, has been characterized in SOTER_TN using 250 unique SOTER units. Each map unit consists of up to four different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts (see Dijkshoorn et al. 2008). Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SOTER_TN have been characterized using 100 profiles of which 44 are synthetic. The latter represent some 59 per cent of the territory. Comprehensive sets of measured attribute data are not available for most of the measured profiles (56) collated in SOTER_TN, as these were not considered in the source materials. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil property estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database ― the current taxotransfer procedure only considers profiles in WISE that: (a) have FAO soil unit names identical to those mapped for Tunisia in SOTER, and (b) originate from regions having similar Köppen climate zones (n= 3566). Property estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and volumetric water content (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and studies of global environmental change. The soil property estimates can be linked to the spatial data (map), using GIS, through the unique SOTER-unit code; database applications should consider the full map unit composition and depth range. The derived data presented here may be used for exploratory assessments at national scale or broader (greater than 1:1 000 000). They should be seen as best estimates based on the current, still limited, selection of soil profiles in SOTER_TN and data clustering procedure ― the type of taxotransfer rules used to fill gaps in the measured data has been flagged to provide an indication of confidence in the derived data

  • Categories  

    This harmonized set of soil parameter estimates for the Indo-Gangetic Plains (IGP) of India, at scale 1:1 000 000, has been derived from soil and terrain data collated in SOTER format by staff of the National Bureau of Soil Survey and Land Use Planning (NBSS and LUP) at Nagpur, India. The data set has been prepared for use in the project on "Assessment of soil organic carbon stocks and change at ... national scale" (GEFSOC), which has IGP-India as one of its four case study areas (see http://www.nrel.colostate.edu/projects/gefsoc-uk/). The land surface of IGP-India has been characterized using 36 unique SOTER units, corresponding with 497 polygons. The major soils of these units have been described using 36 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. Gaps in the measured soil profile data have been filled using a scheme of taxotransfer rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminum saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments, and available water capacity(-33 to-1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure; taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Results are presented as summary files and can be linked to the 1:1M scale SOTER map in a GIS, through the unique SOTER-unit code. The secondary SOTER data set for IGP-India is considered appropriate for exploratory studies at regional scale (greater than1:1M); correlation of soil analytical data should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    This harmonized set of soil parameter estimates for Latin America and the Caribbean was derived from a revised version of the 1:5M Soil and Terrain Database for the region (SOTERLAC, ver. 2.0) and the ISRIC-WISE soil profile database. The land surface of Latin America and the Caribbean has been characterized using 1585 unique SOTER units, corresponding with 5855 polygons. The major soils have been described using 1660 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a step-wise procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 to -1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data. Results are presented as summary files and can be linked to the 1:5M scale SOTERLAC map in a GIS, through the unique SOTER-unit code. The secondary data set is considered appropriate for studies at the continental scale (greater than 1:5M). Correlation of soil analytical data should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    The Soil and Terrain database for Kenya (KENSOTER), version 2.0, at scale 1:1 million, replaces version 1.0 . The update include changes in the GIS file and in the attribute database. The topographic base of KENSOTER was adapted to a version congruent to the Digital Chart of the World. The KENSOTER attribute database has changed with respect to the number of pedons stored and pedon attributes. The KENSOTER version 2.0 database contains a number of measured soil moisture contents at various tensions.