From 1 - 10 / 62
  • Categories  

    Nutrient clusters based on fuzzy k-means of the soil fine earth fraction and spatially predicted at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Limited availability of P in soils to crops may be due to deficiency and/or severe P retention. Earlier studies that drew on large soil profile databases have indicated that it is not (yet) feasible to present meaningful values for “plant-available” soil P, obtained according to comparable analytical methods, that may be linked to soil geographical databases derived from 1:5 million scale FAO Digital Soil Map of the World, such as the 5 x 5 arc-minute version of the ISRIC-WISE database. Therefore, an alternative solution for studying possible crop responses to fertilizer-P applied to soils, at a broad scale, was sought. The approach described in this report considers the inherent capacity of soils to retain phosphorus (P retention), in various forms. Main controlling factors of P retention processes, at the broad scale under consideration, are considered to be pH, soil mineralogy, and clay content. First, derived values for these properties were used to rate the inferred capacity for P retention of the component soil units of each map unit (or grid cell) using four classes (i.e., Low, Moderate, High, and Very High). Subsequently, the overall soil phosphorus retention potential was assessed for each mapping unit, taking into account the P-ratings and relative proportion of each component soil unit. Each P retention class has been assigned to a likely fertilizer P recovery fraction, derived from the literature, thereby permitting spatially more detailed, integrated model-based studies of environmental sustainability and agricultural production at the global and continental level (< 1:5 million). Nonetheless, uncertainties remain high; the present analysis provides an approximation of world soil phosphorus retention potential.

  • Categories  

    Extractable Zinc (Zn) content of the soil fine earth fraction in mg/100kg (pp100m) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Extractable Potassium (K) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) . Values M = mean value predicted. using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Extractable Iron (Fe) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Total nitrogen (N) content in g/kg of the fine earth fraction in 2 depth intervals (0-20 cm and 20-50 cm) measured according to the analytical procedures of wet oxidation and predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories  

    Total Nitrogen (N) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of wet oxidation and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Extractable Aluminium (Al) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Extractable Magnesium (Mg) content of the soil fine earth fraction in mg/kg (ppm) as measured according to the soil analytical procedure of Mehlich 3 and spatially predicted for 0-30 cm depth interval at 250 m spatial resolution across sub-Saharan Africa using Machine Learning (ensemble between random forest and gradient boosting) using soil data from the Africa Soil Profiles database (AfSP) compiled by AfSIS and recent soil data newly collected by AfSIS in partnership with EthioSIS (Ethiopia), GhaSIS (Ghana) and NiSIS (Nigeria as made possible by OCP Africa and IITA), combined with soil data as made available by Wageningen University and Research, IFDC, VitalSigns, University of California and the OneAcreFund. [Values M = mean value predicted]. For details see below for peer reviewed paper (T. Hengl, J.G.B. Leenaars, K.D. Shepherd, M.G. Walsh, G.B.M. Heuvelink, Tekalign Mamo, H. Tilahun, E. Berkhout, M. Cooper, E. Fegraus, I. Wheeler, N.A. Kwabena, 2017. Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutriënt Cycling in Agroecosystems 109(1): 77-102). Maps produced for the Environmental Assessment Agency (PBL), funded by the Netherlands government, in collaboration with the AfSIS and the Vital Signs projects.

  • Categories  

    Exchangeable aluminium (Al3+ measured in 1M KCl solution) in cmolc/kg (fine earth) at two depth intervals (0-20 cm and 20-50 cm) predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)