From 1 - 10 / 15
  • Categories  

    Soil organic carbon stock in tons per ha for ICCP depth intervals predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: t / ha.

  • Categories  

    Soil organic carbon content (measured by either wet oxidation or dry combustion at 900 C) in g/kg (fine earth) at 6 standard depths predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories    

    Soil organic carbon stock in t/ha for 0-30, 30-100 and 100-200 depth intervals predicted using the global compilation of soil ground observations. To visualize these layers please use soilgrids.org.

  • Categories  

    Soil organic carbon density in kg per cubic-m at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: kg/m3 x 10.

  • Categories  

    Soil organic carbon stock in tons per ha for 6 standard depth intervals predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: t / ha.

  • Categories    

    Soil organic carbon content (fine earth fraction) in dg/kg at 6 standard depths predicted using the global compilation of soil ground observations. To visualize these layers please use soilgrids.org.

  • Categories    

    Gravimetric content of organic carbon in the fine earth fraction* (g/kg). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018). * The fine earth fraction is generally defined as being less than 2 mm. However, an upper limit of 1 mm was used in the former Soviet Union and its sattelite states (Katchynsky scheme). This has been indicated in the database.

  • Categories  

    Soil organic carbon content (fine earth fraction) in g per kg at 7 standard depths predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: g / kg.

  • Categories  

    This uniform soil data set for the development of pedotransfer functions was developed at the request of the Global Soil Data Task (GSDT) of the Data and Information System (DIS) of the International Geosphere Biosphere Programme (IGBP). The necessary chemical and physical soil data have been derived from ISRIC's Soil Information System (ISIS) and the soil CD-ROM of the Natural Resources Conservation Service (USDA-NRCS). Analytical data were clustered into functional groups based on soil textural class (FAO) and calculated activity of the clay size minerals. Samples from organic and allophanic soils were flagged as separate categories. The file contain analytical data for 131,472 soil samples, originating from 20,920 profiles. Being based on available data, there are several gaps in the measured data

  • Categories  

    The World Soil Information Service (WoSIS) provides quality-assessed and standardised soil profile data to support digital soil mapping and environmental applications at broad scale levels. Since the release of the first ‘WoSIS snapshot’, in July 2016, many new soil data were shared with us, registered in the ISRIC data repository, and subsequently standardised in accordance with the licences specified by the data providers. Soil profile data managed in WoSIS were contributed by a wide range of data providers, therefore special attention was paid to measures for soil data quality and the standardisation of soil property definitions, soil property values (and units of measurement), and soil analytical method descriptions. We presently consider the following soil chemical properties (organic carbon, total carbon, total carbonate equivalent, total Nitrogen, Phosphorus (extractable-P, total-P, and P-retention), soil pH, cation exchange capacity, and electrical conductivity) and physical properties (soil texture (sand, silt, and clay), bulk density, coarse fragments, and water retention), grouped according to analytical procedures (aggregates) that are operationally comparable. Further, for each profile, we provide the original soil classification (FAO, WRB, USDA, and version) and horizon designations insofar as these have been specified in the source databases. Measures for geographical accuracy (i.e. location) of the point data as well as a first approximation for the uncertainty associated with the operationally defined analytical methods are presented, for possible consideration in digital soil mapping and subsequent earth system modelling. The present snapshot, referred to as ‘WoSIS snapshot - September 2019’, comprises 196,498 geo-referenced profiles originating from 173 countries. They represent over 832 thousand soil layers (or horizons), and over 6 million records. The actual number of observations for each property varies (greatly) between profiles and with depth, this generally depending on the objectives of the initial soil sampling programmes. Citation: Batjes N.H, Ribeiro E, and van Oostrum A.J.M, 2019. Standardised soil profile data for the world (WoSIS snapshot - September 2019), https://doi.org/10.17027/isric-wdcsoils.20190901. The dataset accompanies the following data paper: Batjes N.H., Ribeiro E., and van Oostrum A.J.M., 2019. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot - 2019). Earth System Science Data, https://doi.org/10.5194/essd-12-299-2020.