From 1 - 10 / 31
  • Categories  

    This harmonized set of soil parameter estimates has been developed using an updated 1:500 000 scale Soil and Terrain (SOTER) Database for Jordan. The associated soil analytical data were derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a step-wise procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Nineteeen parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth.

  • Categories  

    This harmonized set of soil parameter estimates for Tunisia. It has been derived from the 1:1 million scale Soil and Terrain Database for the country (SOTER_TN, ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of Tunisia, covering some 164,150 km2, has been characterized in SOTER_TN using 250 unique SOTER units. Each map unit consists of up to four different soil components. In so far as possible, each soil component has been characterized by a regionally representative profile, selected and classified by national soil experts (see Dijkshoorn et al. 2008). Conversely, in the absence of any measured legacy data, soil components were characterized using synthetic profiles for which only the FAO-Unesco (1988) classification is known. Soil components in SOTER_TN have been characterized using 100 profiles of which 44 are synthetic. The latter represent some 59 per cent of the territory. Comprehensive sets of measured attribute data are not available for most of the measured profiles (56) collated in SOTER_TN, as these were not considered in the source materials. Consequently, to permit modelling, gaps in the soil analytical data have been filled using consistent taxotransfer procedures. Modal soil property estimates necessary to populate the taxotransfer procedure were derived from statistical analyses of soil profiles held in the ISRIC-WISE database ― the current taxotransfer procedure only considers profiles in WISE that: (a) have FAO soil unit names identical to those mapped for Tunisia in SOTER, and (b) originate from regions having similar Köppen climate zones (n= 3566). Property estimates are presented for 18 soil variables by soil unit for fixed depth intervals of 0.2 m to 1 m depth: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and volumetric water content (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and studies of global environmental change. The soil property estimates can be linked to the spatial data (map), using GIS, through the unique SOTER-unit code; database applications should consider the full map unit composition and depth range. The derived data presented here may be used for exploratory assessments at national scale or broader (greater than 1:1 000 000). They should be seen as best estimates based on the current, still limited, selection of soil profiles in SOTER_TN and data clustering procedure ― the type of taxotransfer rules used to fill gaps in the measured data has been flagged to provide an indication of confidence in the derived data

  • Categories  

    This harmonized set of soil parameter estimates for Central Africa, comprising Burundi, the Democratic Republic of the Congo and Rwanda, was derived from the Soil and Terrain Database for Central Africa (SOTERCAF ver. 1.0) and the ISRIC-WISE soil profile database, using standardized taxonomy-based pedotransfer (taxotransfer) procedures. The land surface of Central Africa, comprising some 2.4 million km2, has been characterized using 244 unique SOTER units, corresponding with 504 polygons. Each SOTER unit may consist of up to 6 soil components; each of these has been characterized by a representative profile. The main soil units mapped for the region have been characterized using 167 real profiles, selected by soil experts as being regionally representative for these units. The associated soil analytical data have been derived from soil survey reports. Gaps in the measured soil data have been filled using a scheme of using a step-wise procedure that uses taxotransfer rules. These rules were developed using some 5672 soil profiles, held in the ISRIC-WISE database, having similar FAO soil unit names as those reported in the primary SOTERCAF database. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, C/N ratio, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 kPa to -1.5 MPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data.

  • Categories  

    This harmonized set of soil parameter estimates for the Indo-Gangetic Plains (IGP) of India, at scale 1:1 000 000, has been derived from soil and terrain data collated in SOTER format by staff of the National Bureau of Soil Survey and Land Use Planning (NBSS and LUP) at Nagpur, India. The data set has been prepared for use in the project on "Assessment of soil organic carbon stocks and change at ... national scale" (GEFSOC), which has IGP-India as one of its four case study areas (see http://www.nrel.colostate.edu/projects/gefsoc-uk/). The land surface of IGP-India has been characterized using 36 unique SOTER units, corresponding with 497 polygons. The major soils of these units have been described using 36 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. Gaps in the measured soil profile data have been filled using a scheme of taxotransfer rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminum saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments, and available water capacity(-33 to-1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure; taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Results are presented as summary files and can be linked to the 1:1M scale SOTER map in a GIS, through the unique SOTER-unit code. The secondary SOTER data set for IGP-India is considered appropriate for exploratory studies at regional scale (greater than1:1M); correlation of soil analytical data should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    Version 1.2 of describes a harmonized dataset of derived soil properties for the world. It was created using the soil distribution shown on the 1:5 million scale FAO-Unesco Soil Map of the World (DSMW), rasterised at 5 by 5 arcminutes, and soil property estimates derived from the ISRIC-WISE soil profile database, version 3.1. The dataset considers 19 soil variables that are commonly required for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil gaseous emissions, and analyses of global environmental change. It presents ‘best’ estimates for: soil drainage class, organic carbon content, total nitrogen, C/N ratio, pH (H2O), CECsoil, CECclay, effective CEC, base saturation, aluminium saturation, calcium carbonate content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity, particle size distribution (i.e. content of sand, silt and clay), content of coarse fragments (less than 2 mm), bulk density, and available water capacity (-33 to -1500 kPa). These estimates are presented by FAO soil unit for fixed depth intervals of 20 cm up to 100 cm depth (or less when appropriate) for so-called virtual profiles. The associated soil property values were derived from analyses of some 10,250 profiles held in WISE using a scheme of taxonomy-based taxotransfer rules complemented with expert-rules. The type of rules used to derive the various soil property values have been flagged in the database to provide an indication of the possible confidence in the derived data. Most map units on the DSMW are complex, comprising up to eight different soil units. Assessments and model applications that use the derived soil properties therefore should consider the full map unit composition and depth range. The soil property values presented here should be seen as best estimates based on the current selection of soil profiles in WISE, the procedure for clustering the measured data, taxotransfer scheme used for deriving soil, properties, and the spatial data of the digital Soil Map of the World. The derived information may be used for exploratory assessments at a broad scale (greater than 1:5 million; 5 by 5 arcminutes and coarser), pending the global update of the information on world soil resources at more detailed scales, upon due consideration of the underlying generalisations and assumptions. Note: A more recent assessment, at a resolution of 30arcsec (WISE30sec), is available at: http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc

  • Categories  

    This harmonized set of soil parameter estimates for Southern Africa has been derived from the 1:2M scale Soil and Terrain Database for Southern Africa (SOTERSAF ver. 1.0) and ISRIC-WISE soil profile database. The land surface of Southern Africa has been characterized using 4022 unique SOTER units, corresponding with 6099 polygons. The major soils have been described using 941 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a step-wise procedure that uses taxonomy-based pedotransfer rules, based on some 9600 soil profiles held in the WISE2 database. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 to -1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data. Results are presented as summary files and have been linked to the 1:2M scale SOTERSAF map in a GIS, through the unique SOTER-unit code.

  • Categories  

    This harmonized set of soil parameter estimates for Central and Eastern Europe has been derived from a revised version of the 1:2.5M Soil and Terrain (SOTER) Database for Central and Eastern Europe (SOVEUR ver. 1.1) and the ISRIC-WISE soil profile database. The land surface of Central and Eastern Europe, West of the Ural Mountains, has been characterized using 8361 unique maps or SOTER units. The corresponding GIS files include some 9500 mapped polygons, including miscellaneous units. The major soils have been described using 662 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 to -1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure; taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Results are presented as summary files and can be linked to the 1:2.5M scale SOVEUR map in a GIS, through the unique SOTER-unit code. The secondary data are considered appropriate for studies at the continental scale (greater than1:2.5 million); correlation of soil analytical data should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    This harmonized set of soil parameter estimates for Kenya (KENSOTER), at scale 1:1M, compiled by the Kenya Soil Survey. The land surface of the Republic of Kenya - excluding lakes and towns - has been characterized using 397 unique SOTER units corresponding with 623 soil components. The major soils have been described using 495 profiles, which include 178 synthetic profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports and expert knowledge. Gaps in the measured soil profile data have been filled using a step-wise procedure which includes three main stages: (1) collate additional measured soil analytical data where available; (2) fill gaps using expert knowledge and common sense; (3) fill the remaining gaps using a scheme of taxotransfer rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminum saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments, and available water capacity. These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure. Taxotransfer rules have been flagged to provide an indication of the possible confidence in the derived data. Results are presented as summary files and can be linked to the 1:1M scale SOTER map for Kenya in a GIS, through the unique SOTER-unit code. The secondary data are considered appropriate for studies at the national scale (1:1M). Correlation of soil analytical data, however, should be done more rigorously when more detailed scientific work is considered.

  • Categories  

    The Soil and Terrain database for Cuba primary data (version 1.0), at scale 1:1 million (SOTER_Cuba), was compiled of enhanced soil informtion within the framework of the FAO's program Land Degradation Assessment in Drylands (LADA). Primary soil and terrain data for Cuba were obtained from the SOTERLAC database (ver. 2) at scale 1:5 million. This update includes changes in the GIS file, based on the SRTM-DEM derived surface information and supplementary attributes data changes of the pedon database. SOTER forms a part of the ongoing activities of ISRIC, FAO and UNEP to update the world's baseline information on natural resources.The project involved collaboration with national soil institutes from the countries in the region as well as individual experts.

  • Categories  

    This harmonized, gridded global data set of soil parameter estimates includes files listing: (1) soil parameter estimates for the component soil units of each terrestrial grid cell, in un-binned format, and (2) soil parameter estimates aggregated or binned into a number of predefined classes. The spatial data, with a resolution of ½ by ½ degree, was derived from the ISRIC-WISE soil database. The land surface between longitudes -180o W and +180o E and latitudes +90o N and -90o S has been characterized using 45948 unique map units; each of these can comprise from one to ten soil units, characterized according to the original legend of the 1:5 million scale Soil Map of the World (FAO-Unesco 1974). Soil parameter estimates for each of these units were derived from analyses of some 9600 profiles held in a working copy of WISE (ver. 2.0). Twenty-two soil variables, identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil gaseous emissions and analyses of global environmental change, were considered. Parameter estimates for the topsoil (0-30 cm) and the subsoil (30-100 cm) are presented for the following variables: content of organic carbon, total nitrogen, the C/N ratio, pH(H2O), CECsoil, CECclay, base saturation, total exchangeable bases, aluminum saturation, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), calcium carbonate content, gypsum content, content of sand, silt and clay, content of fragments less than 2 mm, bulk density, total porosity. For soil drainage class, effective soil depth, and available water capacity (-10 to -1500 kPa), however, parameter estimates are presented on a profile basis. The parameter estimates - median values - presented here should be seen as best estimates; possible types and sources of uncertainty are discussed in the report. The data are considered appropriate for exploratory studies at global scale (greater than 1:5 000 000). Note: A more recent assessment, at a resolution of 30arcsec (WISE30sec), is available at: http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc