Keywords
Categories
Contact for the resource
Years
Years
Formats
Representation types
From 1 - 10 / 189
  • This dataset includes global soil salinity layers for the years 1986, 1992, 2000, 2002, 2005, 2009 and 2016. The maps were generated with a random forest classifier that was trained using seven soil properties maps, thermal infrared imagery and the ECe point data from the WoSIS database. The validation accuracy of the resulting maps was in the range of 67–70%. The total area of salt affected lands by our assessment is around 1 billion hectares, with a clear increasing trend. Further details are provided in a peer-reviewed journal article (https://doi.org/10.1016/j.rse.2019.111260). The code and data used to produce the global soil salinity maps can be accessed by registered Google Earth Engine users at https://code.earthengine.google.com/d43e5a92ae1deed32a0929f57b572756.

  • Categories    

    Soil moisture content by weight, at tension 200 kPa (pF 3.3) (g/100g). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories  

    This harmonized set of soil parameter estimates for Central and Eastern Europe has been derived from a revised version of the 1:2.5M Soil and Terrain (SOTER) Database for Central and Eastern Europe (SOVEUR ver. 1.1) and the ISRIC-WISE soil profile database. The land surface of Central and Eastern Europe, West of the Ural Mountains, has been characterized using 8361 unique maps or SOTER units. The corresponding GIS files include some 9500 mapped polygons, including miscellaneous units. The major soils have been described using 662 profiles, selected by national soil experts as being representative for these units. The associated soil analytical data have been derived from soil survey reports. These sources seldom hold all the physical and chemical attributes ideally required by SOTER. Gaps in the measured soil profile data have been filled using a procedure that uses taxotransfer rules, based on about 9600 soil profiles held in the WISE database, complemented with expert-rules. Parameter estimates are presented by soil unit for fixed depth intervals of 0.2 m to 1 m depth for: organic carbon, total nitrogen, pH(H2O), CECsoil, CECclay, base saturation, effective CEC, aluminium saturation, CaCO3 content, gypsum content, exchangeable sodium percentage (ESP), electrical conductivity of saturated paste (ECe), bulk density, content of sand, silt and clay, content of coarse fragments (less than 2 mm), and available water capacity (-33 to -1500 kPa). These attributes have been identified as being useful for agro-ecological zoning, land evaluation, crop growth simulation, modelling of soil carbon stocks and change, and analyses of global environmental change. The current parameter estimates should be seen as best estimates based on the current selection of soil profiles and data clustering procedure; taxotransfer rules have been flagged to provide an indication of the confidence in the derived data. Results are presented as summary files and can be linked to the 1:2.5M scale SOVEUR map in a GIS, through the unique SOTER-unit code. The secondary data are considered appropriate for studies at the continental scale (greater than 1:2.5 million); correlation of soil analytical data should be done more rigorously when more detailed scientific work is considered.

  • Categories    

    Soil moisture content by volume, at tension 100 kPa (pF 3.0) (cm³/100cm³). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories  

    Exchangeable magnesium (Mg2+ measured in 1M NH4OAc buffered at pH 7 with part of the data converted from data measured according to Mehlich 3) in cmolc/kg (fine earth) at 2 depth intervals (0-20 cm and 20-50 cm) predicted using two Africa soil profiles datasets. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories    

    Gravimetric content of organic carbon in the fine earth fraction* (g/kg). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018). * The fine earth fraction is generally defined as being less than 2 mm. However, an upper limit of 1 mm was used in the former Soviet Union and its sattelite states (Katchynsky scheme). This has been indicated in the database.

  • Categories  

    Exchangeable sodium (Na+ measured in 1M NH4OAc buffered at pH 7 with part of the data converted from data measured according to Mehlich 3) in cmolc/kg (fine earth) at 2 depth intervals (0-20 cm and 20-50 cm) predicted using two Africa soil profiles datasets. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)

  • Categories    

    Soil moisture content by weight, at tension 500 kPa (pF 3.7) (g/100g). ISRIC is developing a centralized and user–focused server database, known as ISRIC World Soil Information Service (WoSIS). The aims are to: • Safeguard world soil data "as is" • Share soil data (point, polygon, grid) upon their standardization and harmonization • Provide quality-assessed input for a growing range of environmental applications. So far some 400,000 profiles have been imported into WoSIS from disparate soil databases; some 150,000 of have been standardised. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Further, in most source data sets, there are fewer data for soil physical as opposed to soil chemical attributes and there are fewer measurements for deeper than for superficial horizons. Generally, limited quality information is associated with the various source data. Special attention has been paid to the standardization of soil analytical method descriptions with focus on the set of soil properties considered in the GlobalSoilMap specifications. Newly developed procedures for the above, that consider the soil property, analytical method and unit of measurement, have been applied to the present set of geo-referenced soil profile data. Gradually, the quality assessed and harmonized "shared" data will be made available to the international community through several webservices. All data managed in WoSIS are handled in conformance with ISRICs data use and citation policy, respecting inherited restrictions. The most recent set of standardized attributes derived from WoSIS are available via WFS. For instructions see Procedures manual 2018, Appendix A, link below (Procedures manual 2018)

  • Categories  

    Sodic soil grade based on WRB soil types and soil pH predicted using the global compilation of soil ground observations. Accuracy assessement of the maps is availble in Hengl et at. (2017) DOI: 10.1371/journal.pone.0169748. Data provided as GeoTIFFs with internal compression (co='COMPRESS=DEFLATE'). Measurement units: grade.

  • Categories  

    Depth to bedrock (R horizon) in cm, to maximum 175 cm, predicted using two sets of Africa soil profiles data. For details see published paper here below (Hengl T., G.B.M. Heuvelink, B. Kempen, J.G.B. Leenaars, M.G. Walsh, K.D. Shepherd, A. Sila, R.A. MacMillan, J. Mendes de Jesus, L.T. Desta, J.E. Tondoh, 2015. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6)